Daftar Isi Halaman Ini:
Perlakuan panas tungsten
Titik leleh tungsten adalah 3422°C, yang merupakan titik leleh tertinggi di antara logam. Dari sudut pandang pemrosesan, ia memiliki suhu transisi ulet-ke-getas yang tinggi dan kerapuhan suhu rendah pada suhu kamar. Ini adalah logam yang sulit untuk diproses karena kekuatan ikatan pada batas butir lemah dan mudah retak dari batas butir.
“Penambahan renium (Re) diketahui dapat meningkatkan keuletan tungsten pada suhu rendah, tetapi merupakan logam yang paling mahal dan tidak praktis.Alternatifnya adalah penyempurnaan struktur butir dengan metalurgi serbuk dan proses pemrosesan termal. Diekstraksi dari tambang dan dijadikan bubuk, tungsten dibentuk oleh metalurgi serbuk. Dalam tungsten yang dipadatkan ini, ukuran dan bentuk bubuk yang disinter (bentuk butiran equiaxial) dihancurkan dan diregangkan dengan pengerjaan plastik seperti penggulungan dan penarikan kawat, menghasilkan sejumlah besar dislokasi dan mengurangi ukuran butiran kristal. dan bentuk butirannya juga memanjang ke arah tertentu.Akibatnya, menjadi mungkin untuk menurunkan suhu transisi ulet-getas hingga mendekati suhu kamar dengan mempromosikan penyempurnaan struktur butiran termal. Pengerjaan plastik dikategorikan menurut suhu selama pemrosesan. Jika suhunya mendekati suhu kamar, itu adalah “pengerjaan dingin”, jika lebih dari setengah titik leleh, itu adalah “pengerjaan panas”, dan jika kurang dari setengahnya, itu adalah “pengerjaan hangat”.Dalam pengerjaan panas, sulit untuk memproses produk tipis dan tipis secara seragam karena penurunan suhu selama pemrosesan, sehingga filamen diproduksi dengan pengerjaan dingin. Anil penghilang stres diperlukan karena regangan tetap berada dalam struktur selama pengerjaan dingin. Pengerjaan dingin menghasilkan banyak regangan elastis, sehingga rekristalisasi kemungkinan besar terjadi, dan bahkan paparan sementara terhadap suhu tinggi akan menyebabkan rekristalisasi, mempercepat penggetasan antar butir di wilayah suhu rendah. Rekristalisasi menyebabkan kendur karena deformasi mulur filamen. ”
Tentang rekristalisasi
Rekristalisasi mengacu pada pembentukan dan pertumbuhan butiran kristal baru, yang sama sekali berbeda dari butiran kristal yang dihasilkan oleh pemrosesan, dan yang tidak mengandung cacat seperti dislokasi, untuk membentuk struktur butiran kristal yang sama sekali berbeda dari struktur yang diproses. Disebut.
Rekristalisasi adalah proses terpisah dari pemulihan, di mana butir baru dihasilkan dikelilingi oleh batas butir sudut tinggi yang tidak mengandung cacat seperti dinding sel atau dislokasi, dan butir ini tumbuh dengan memakan butir yang berdekatan. Melakukan. Saat butir kristal tumbuh dan batas butir bergerak, cacat seperti dinding sel dan dislokasi pada butir kristal yang ada menghilang.
Dipercayai bahwa kristal baru ini berasal dari tempat di mana regangan elastis terkonsentrasi pada struktur butir yang ada (intragranula atau batas butir). Inti rekristalisasi lebih mungkin terjadi pada material pengerjaan dingin dengan tingkat kerja tinggi, yang menghasilkan banyak regangan elastis, dan rekristalisasi dimulai pada 900 hingga 1000°C. Semakin banyak inti rekristalisasi yang dihasilkan, semakin banyak butir rekristalisasi setelah tumbuh, sehingga ukuran butir rekristalisasi cenderung semakin kecil. Oleh karena itu, jika ketangguhan pada suhu rendah ditingkatkan dengan memurnikan butiran kristal dengan pengerjaan dingin, rekristalisasi kemungkinan akan terjadi, bahkan jika terkena suhu tinggi untuk sementara, rekristalisasi terjadi dan penggetasan batas butir dipromosikan di daerah suhu rendah. Perlu dicatat bahwa kumparan filamen yang terbuat dari kawat tungsten murni berubah bentuk (deformasi mulur) karena sedikit gaya eksternal seperti beratnya sendiri karena fenomena geser pada batas butir yang memanjang ke arah radial filamen bila digunakan pada ketinggian suhu. Filamen yang cacat menyebabkan panas berlebih lokal dan rentan terhadap pemutusan.
Tentang doping tungsten
Sebagai penanggulangan, ada metode doping kalium di mana kalium (K), silikon (Si), dan aluminium (Al) ditambahkan selama metalurgi serbuk. Selama perlakuan panas, silikon dan aluminium menguap, dan kalium menguap menjadi tungsten, menciptakan gelembung Gelembung ini mengarah pada stabilisasi struktur mikro dan mempersulit terjadinya rekristalisasi. Filamen yang digunakan dalam lampu halogen adalah tungsten yang diolah ini.
Sifatnya juga berubah tergantung pada jumlah kalium yang ditambahkan. Jika jumlahnya besar, suhu rekristalisasi naik, tetapi keuletan pada suhu rendah memburuk dan pemrosesan menjadi sulit. Dengan cara ini, kualitas dan kuantitas penting untuk menstabilkan kinerja dan kualitas. “Namun, setelah jangka waktu yang lama, gelembung-gelembung akibat doping ini berangsur-angsur berkumpul dan membentuk gelembung-gelembung besar di dalam filamen. Ini adalah faktor yang membatasi masa pakai lampu, tetapi tekanan tinggi dari gas yang diisikan ke dalam lampu halogen menekan pertumbuhan dan perluasan gelembung ini (lubang doping). Dalam hal ini juga, gas tersegel bertekanan tinggi diyakini berkontribusi pada umur lampu yang panjang. Selain itu, pengotor dalam gelembung ini pada akhirnya akan meletus ke dalam gas yang terisi di dalam lampu, menyebabkan keseimbangan halogen dari gas yang terisi tersebut terganggu dan kemungkinan menyebabkan menghitam. , yang menghambat siklus halogen). Inilah salah satu penyebab menghitam yang terjadi beberapa ratus jam setelah dimulainya penerangan.
Perawatan permukaan kumparan tungsten
Kumparan filamen dapat digunakan apa adanya tanpa perawatan permukaan apa pun, tetapi dibersihkan sebelum dipasang ke lampu untuk menghilangkan kotoran dan mencegah oksidasi. Akhirnya, perlakuan panas atmosfer dilakukan dengan menggunakan hidrogen.
Perawatan pembersihan umumnya dilakukan dengan merebus kumparan tungsten dalam larutan natrium hidroksida (NaOH) 10% selama sekitar 10 menit. Jika pengetsaan permukaan diperlukan, perlakuan asam hidrofluorat (HF) 5% dilakukan, dan permukaannya dikorosi dengan larutan encer kalium ferrisanida alkali. Terakhir, bilas hingga bersih dengan air bersih.
Setelah itu, penyangga (jangkar atau penyangga) dipasang ke filamen koil, dan molibdenum foil serta batang timah eksternal dilas. Setelah itu, permukaan dapat diolah lagi dengan larutan natrium hidroksida (NaOH) berair.
Akhirnya, perlakuan panas atmosfer dilakukan dengan menggunakan hidrogen. Hidrogen memiliki metode pembakaran menggunakan hidrogen kering dan hidrogen basah.